The Impact of Satellite Winds on Experimental GFDL Hurricane Model Forecasts
نویسندگان
چکیده
A series of experimental forecasts are performed to evaluate the impact of enhanced satellite-derived winds on numerical hurricane track predictions. The winds are derived from Geostationary Operational Environmental Satellite-8 (GOES-8) multispectral radiance observations by tracking cloud and water vapor patterns from successive satellite images. A three-dimensional optimum interpolation method is developed to assimilate the satellite winds directly into the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane prediction system. A series of parallel forecasts are then performed, both with and without the assimilation of GOES winds. Except for the assimilation of the satellite winds, the model integrations are identical in all other respects. A strength of this study is the large number of experiments performed. Over 100 cases are examined from 11 different storms covering three seasons (1996–98), enabling the authors to account for and examine the case-to-case variability in the forecast results when performing the assessment. On average, assimilation of the GOES winds leads to statistically significant improvements for all forecast periods, with the relative reductions in track error ranging from ;5% at 12 h to ;12% at 36 h. The percentage of improved forecasts increases following the assimilation of the satellite winds, with roughly three improved forecasts for every two degraded ones. Inclusion of the satellite winds also dramatically reduces the westward bias that has been a persistent feature of the GFDL model forecasts, implying that much of this bias may be related to errors in the initial conditions rather than a deficiency in the model itself. Finally, a composite analysis of the deep-layer flow fields suggests that the reduction in track error may be associated with the ability of the GOES winds to more accurately depict the strength of vorticity gyres in the environmental flow. These results offer compelling evidence that the assimilation of satellite winds can significantly improve the accuracy of hurricane track forecasts.
منابع مشابه
The Impact of Satellite-derived Winds on Gfdl Hurricane Model Forecasts
A series of experimental forecasts are performed to evaluate the impact of satellite-derived winds on numerical hurricane track predictions using the GFDL model. Over 100 cases are examined from 10 different storms covering 3 seasons (1996-1998), enabling us to account for the large case-to-case variability in the forecast results when assessing the wind impact. On average, assimilation of the ...
متن کاملThe Impact of Dropwindsonde Data on GFDL Hurricane Model Forecasts Using Global Analyses
The National Centers for Environmental Prediction (NCEP) and the Hurricane Research Division (HRD) of NOAA have collaborated to postprocess Omega dropwindsonde (ODW) data into the NCEP operational global analysis system for a series of 14 cases of Atlantic hurricanes (or tropical storms) from 1982 to 1989. Objective analyses were constructed with and without ingested ODW data by the NCEP operat...
متن کاملImproved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements
[1] Hyperspectral infrared sounders such as the AIRS and IASI provide unprecedented global atmospheric temperature and moisture soundings with high vertical resolution and accuracy. The AIRS and IASI data have been used in global numerical weather prediction models with positive impact on weather forecasts. The high spatial resolution single field-ofview soundings retrieved from AIRS have been ...
متن کاملIncreased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system
The impact of CO 2 -induced global warming on the intensities of strong hurricanes is investigated using the GFDL regional high-resolution hurricane prediction system. The large-scale initial conditions and boundary conditions for the regional model experiments, including SSTs, are derived from control and transient CO 2 increase experiments with the GFDL R30-resolution global coupled climate m...
متن کاملEvaluation of GFDL and Simple Statistical Model Rainfall Forecasts for U.S. Landfalling Tropical Storms
To date, little objective verification has been performed for rainfall predictions from numerical forecasts of landfalling tropical cyclones. Until 2001, digital output from the operational version of the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane forecast model was available only on a 1° grid. The GFDL model was rerun or reanalyzed for 25 U.S. landfalling tropical cyclones from 199...
متن کامل